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Abstract

We propose a probabilistic extension of the matching pursuit adaptive signal pro-
cessing algorithm introduced by Mallat and others. In adaptive signal processing,
signals are expanded in terms of a large linearly dependent “dictionary” of functions
rather than in terms of an orthonormal basis. Matching pursuit is a simple greedy
algorithm for generating an expansion of a given signal. In probabilistic matching
pursuit multiple random expansions are obtained as estimates for a given signal.
The new algorithm is illustrated in the context of signal denoising. Although most
of the random expansions generated by probabilistic matching pursuit are poorer
estimates for the signal than those obtained by matching pursuit, our final estimate,
obtained as an expected value computed by means of an ergodic average, can im-
prove the result obtained by MP in some denoising situations. One of the major
underlying ideas is a novel notion of coherence between a signal and the dictionary.
Several simulated examples are presented.
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0 Notation

The following standard notation will be used: N = {1,2,3,...} is the set of
natural numbers, R is the set of real numbers, and C is the set of complex
numbers. RT = (0, 00) is the set of positive real numbers.

Given a set S, we denote the countable Cartesian product of S with itself by
SN and we denote the cardinality of S by |S].

We use the following standard functions: Given a real number z, |z | represents
the floor of x, i.e., the greatest integer less than or equal to z. We denote the
normal distribution with mean p and standard deviation o by N (u, o).

The symbol o is used to indicate that two density functions are equal up to
a normalization constant.

We use the following notation from linear algebra: Given a vector v, we denote
its components by [v]; or v;. An inner product between two members f and g
of a vector space is denoted by (f, g).

Given a probability space (€2, i), the support of p is the largest measurable
subset A C Q such that p(A) = 1.

Given a noise signal f = z + ow, the signal to noise ratio is defined as the
ratio of signal energy to noise energy:
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For the simulated examples, f;, # = 1,...,5 are signals defined in Section 4.4
and each f; ;,4=1,...,5,7 =1,... ,4represent the signal f; with added noise
of “level” j. lj‘f and ZP] are the reconstructions of f; by matching pursuit and
probabilistic matching pursuit respectively.



1 Introduction

Probabilistic matching pursuit is a randomization of the matching pursuit al-
gorithm for signal processing introduced by Mallat and others, which in turn
is an adaptive alternative to traditional signal processing methods. We be-
gin with a brief overview of the chain of ideas leading from traditional signal
processing to probabilistic matching pursuit, first in the context of signal com-
pression, and then in the context of denoising. We then provide a description of
the main idea of our paper. We close the introduction with a detailed overview
of the rest of the paper.

1.1  Signal Compression with Adaptive Expansions

Signal compression is generally performed by expanding a given signal in a
series and then throwing away terms of the series which may be neglected. The
traditional approach uses an orthonormal basis such as a Fourier or wavelet
basis to develop unique series expansions. In order to further improve signal
compression it is natural to search for adaptive decompositions in which series
are expanded in terms of a linearly dependent family of unit vectors (here
called a dictionary) which is in general much larger than a basis. In this case
expansions are no longer unique, so they may be adapted in a manner which
depends on the given signal [19,14]. Such adaptive expansions will fit the
underlying signal better, but there is the new difficulty of determining which
of the many different expansions to use.

In the case of compression, we wish to get the best approximation by using
as few terms as possible. Therefore, the basic optimization problem we must
solve is the following: given a dictionary D = {g, : 7 € ['}, an integer M and
a vector f in the space spanned by D, find a sub-collection I C I'" with cardi-
nality M and numbers 3, such that ||f — . c; 3,9,| is minimized. Given the
generality of the collection D, globally optimizing the search of vectors in the
expansion is an NP-complete search problem [6]. Various efficient suboptimal
solutions to this optimization problem have been proposed. The best wavelet
basis algorithm [22] gives optimal solutions for special collections of functions.
The basis pursuit algorithm [5] poses the problem as a linear optimization
problem. The matching pursuit (MP) algorithm, introduced in [6] and [13]
and described below, is perhaps the simplest general-purpose adaptive signal
processing algorithm. Numerical comparisons for those three approaches are
presented in [5] and [14].

In matching pursuit the single dictionary element which best matches the
signal is removed from the signal, and the process is repeated with the signal



residue from the previous step until a stopping rule is satisfied. If by “best
dictionary element” we mean the one with maximum inner product with the
signal, the residue obtained at each step has squared norm as small as possible
for that step. An algorithm that operates in this way with minimal “look
ahead” is known as a greedy algorithm. The greedy MP algorithm is simple,
fast, and general, with many interesting applications [12,15,18]. Its generality
is due to the fact that it requires minimal assumptions on the dictionary
vectors, which must only belong to a Hilbert space. Rates of convergence and
other mathematical questions related to MP are investigated in [7] and [13].

However, the fact that multiple expansions are possible with redundant dictio-
naries gives us the opportunity of selecting expansions at random from many
different possibilities, an option which is not available in the case of orthonor-
mal bases. Random selection of expansions offers the following advantages over
deterministic selection:

e Random expansions may be generated more quickly than deterministic ex-
pansions.

e Random expansions do not force us to restrict searches to a discrete subset
(a search grid) of a dictionary.

e The availability of multiple random expansions permits us to improve results
by averaging.

e The probability distributions employed in random selection are far more
flexible than deterministic selection procedures, and may be adjusted to
take into account empirical observations or additional knowledge in special-
case situations.

Furthermore, the deterministic choice of expansions is a special case of prob-
abilistic choice, which means that carefully chosen probabilistic expansions
should be at least as good as deterministic expansions.

The purpose of this paper is to present a probabilistic extension of the MP
algorithm which offers some advantages over MP. We have modified matching
pursuit to select dictionary elements at random from a list of promising can-
didates (those above a certain threshold inner product). Such selection rule
gives an algorithm which is easy to understand and analyze relative to match-
ing pursuit. This new algorithm was designed as a denoising algorithm and is
poor as a compression tool.

1.2 Signal Denoising with Adaptive Expansions

Signal denoising is generally performed in a manner similar to that of compres-
sion, by expanding a given signal in a series and throwing away the terms that
“look like” noise. The correct selection of stopping rule is critical in denoising:



if we terminate our series too early we may miss crucial signal features, and
if we terminate our series too late we will include noise in our estimate of the
signal.

For example, signals embedded in Gaussian noise are well estimated by non-
linear shrinkage of wavelet coefficients from an orthonormal wavelet basis [1].
It has been established in [10] that this type of denoising outperforms tradi-
tional estimators. The heuristic behind this approach relies on the fact that
all empirical wavelet coefficients contribute noise proportional to the variance
but only a few wavelet coefficients contribute to the signal. Therefore it is the
property of wavelet basis to compress the signal information (few coefficients
are needed to reproduce a large percentage of the energy of the signal) and
the ability to recognize noise in the wavelet domain that leads to a powerful
technique for denoising.

Adaptive approximations necessarily offer a better compression of a signal
than expansions in terms of an orthonormal basis. However, in the presence
of noise, estimations by thresholding may not be improved by an adaptive ex-
pansion because the flexibility of the search may result in a dictionary element
that correlates well with the noise. A practical solution to this problem is to
define the noisiness of a signal relative to the given dictionary. In the context
of an orthonormal basis this is known as coherent basis thresholding (see [14,
page 465]). In the MP context this idea implies a practical stopping rule, name-
ly comparing the normalized inner products of the residues with the averages
of the normalized inner products of noise. Then, given the iterative nature of
MP, denoising is performed by stopping the search for new components once
the next residue of the algorithm is recognized as noise. The denoised function
is then the expansion of the original noisy function in terms of the components
found (which are called coherent components). See Section 2.2 for details.

1.8  Probabilistic Matching Pursuit

We now describe the main idea of our paper. Let f; = z; + ocw; where the
vector z is a given signal and w; are a finite set of samples from an i.i.d.
sequence of random variables W; with distribution N (0,1). Our intention is
to take advantage of the many representations for z available in the redundant
dictionary D. Usually z is approximated by a single (coherent) vector ¢, but
we will introduce a probability space (€2, 1), the elements of which are denoted
by z, and a family of functionals C; on this probability space. The denoised
approximation to each component z; will be given by the expected value

E,(C) = [ Ci(x) du(x).



The measure p will be supported in a subset of vectors of D that resemble
characteristics of the signal and hence offer the opportunity to reinforce a good
reconstruction. The main ingredient in our approach is a randomization of the
set of labels of the dictionary which gives a probabilistic way to distinguish
between coherent structure and noise. These notions are relative to the given
dictionary. The construction of (€2, i) is done is Section 3.

Next, we give an argument to explain why an expected value offers a better
reconstruction in certain situations. The reconstruction error is measured in
terms of the relative mean squared error

—-E,(C
2]
where || - || is the norm induced by the given inner product. From convexity of

the norm functional and Jensen’s ([16]) inequality we see that
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When the MP expansion is not optimal (see the discussion in Section 4) many
good quality expansions are available. These expansions are included in the
support of x4 and the average of their RMSE appear in the right hand side
of (1). In practical situations the left hand side of (1) is considerably small-
er than the right hand side because the norm functional is strictly convex
and the samples tend to surround the correct value with similar errors, so
we are averaging approximations which lie roughly on a sphere surrounding
the correct value. This improvement will be demonstrated with numerical ex-
amples throughout the paper. We report improved performance relative to
the performance of MP denoising; comparison with respect to other denois-
ing techniques is outside the scope of the paper. However, note that adaptive
denoising improves over denoising with an orthonormal basis (which in turn
improves over traditional estimators) if the signal to be analyzed can be more
efficiently compressed in the dictionary that in the given orthonormal basis
(see the discussion in [14, page 464]).

1.4 Organization of the Paper

The matching pursuit algorithm with Gabor dictionaries as discussed in [13]
and [14] is reviewed in Section 2, where we also indicate the specific Hilbert
spaces which will be used in our implementations, present important defi-
nitions, and introduce denoising using the MP algorithm. We introduce our
probabilistic extension of MP and comment on its main features in Section 3.
We describe the computational details of PMP and analyze its computational



cost in Sections 4.1 and 4.2. We discuss potential improvements of the new
method over the MP method for denoising and study performance in several
simulated denoising tasks in Sections 4.3 and 4.4. Finally, we draw conclusions
on the degree of success of our method and its future prospects in Section 5.

The appendices provide technical details on three aspects of the implemen-
tation of our algorithm. The rejection method for sampling is presented in
Appendix A, and two methods for speeding up the algorithm, the Bernoulli
shift and fast formulas for the inner products of Gabor functions, are discussed
in Appendices B and C.

2 The MP Algorithm

In this section we review the essential aspects of the matching pursuit algo-
rithm as discussed in [13]. Let H be a Hilbert space, we define a dictionary as
a family D = {g, : v € I'} of vectors in H such that ||g,|| = 1. Let V be the
closed linear span of the dictionary vectors. We say that the dictionary is com-
plete if V.= H. MP approximates f by orthogonal projections on elements of
D; i.e., given g,, € D the vector f can be written as

f={f, 970>970 +Rf (2)

where Rf is the residual vector left after approximating f in the direction of
G- Clearly g,, is orthogonal to Rf, so

IFIZ =14, g20) I* + 1RSI (3)

To minimize [|[Rf|| we must maximize |(f, g,)| over g,, € D. In general, it
is only computationally feasible to find an “almost optimal” vector g,, in the
sense that

(£, 9200 | = max |(f, g,)| = asup[(f, g-)|, (4)
ver

= v€la

where I'y, C I' and « is an optimality factor which satisfies 0 < a < 1. The
construction of I', depends on the dictionary; typically, if the dictionary is
indexed by a set of continuous parameters [', then I', will be a discrete grid
of some sort in I'. For details we refer to Section 2.1 and [13].

We then continue the matching pursuit by induction. Let R°f = f. Suppose
that we have computed R"f, the residue of order n, for some n > 0. We then
choose an element g, € D, = {g, : v € 'y} which closely matches the residue

R"f:

(B f, 93| = asup [(B"f, 91)|- (5)



The residue R"f is decomposed as

R'f =(R"f, 9y.) 97, + R™Lf (6)
which defines R"*! f, the residue of order n + 1. Let us repeat this decompo-
sition m times. Writing f in terms of the residues R"f, n = 0,1,... ,m and
applying (6) yields

m—1

f= Z <Rnfa g7n>g’)’n + R"f. (7)

n=0

The following theorem is fundamental to the MP algorithm [13].

Theorem 1 If D is a complete dictionary and if f € H then

f - i <ka7 97k>97k (8)
k=0

and

2

1P = i (R 1,0,

2.1 Gabor Dictionaries

Gabor functions are “windowed” trigonometric functions with infinite expo-
nentially decreasing tails. It is useful to consider two kinds of Gabor functions:
functions which are either continuous (defined on R) or discrete (defined on
the discrete subset S of R).

As the window function ¢(t) we use the normalized Gaussian given by
g(t) = 24, (10)

For any v = (s,u,§) € R" x R? =T, let the Gabor function g, be given by

1 t—u\ g
0(0) = o (") e (1)
The factor 1/4/s normalizes g,(t). Here s > 0 is called the scale of the func-
tion, u its translation and & its frequency modulation. g.,(t) is centered at the
abscissa u and its energy is mostly concentrated in a neighborhood of u of size
proportional to s. When f(t) is real we use dictionaries of real time-frequency
functions. For any v = (s, u, &) any phase ¢ € [0, 27), define

I (t) = Kf}?ﬂ (t _S u) cos({t + ¢) (12)



where the positive constant K, 4 is determined by the condition [|g,,¢ || = 1.
For convenience we use the notation 3 = (v, ¢) and Kz = K, 4).

We now define the discrete Gabor functions which are used in the formalism
of Section 3 and in the software implementation used for the numerical exper-
iments. In the discrete case f is assumed to be a signal f(¢) supported on a
discrete set S = {t;}, i = 1, ..., |S| where |S| may be finite or infinite. We
equip S with the Dirac discrete measure and we will consider the space L*(S).
If [S| = N we use the notation f; = [f]; = f(t;), f = (f1,..., fn). The Gabor
functions are discretized (see (??) in Appendix C) and considered as elements
of L*(S). Inner products are given by

(f,9) =D f(t:) ga(t:). (13)

1€S

In Appendix C equations are presented which are only valid when the points in
S are uniformly spaced and |S| equals infinity. To make use of these formulas in
practice, f is assumed to be zero outside a given interval. The dictionary of real
time-frequency vectors is defined by Dr = {g(1,4) : (7,0) € A =T x[0,2m)}.
Matching pursuit performed with this dictionary decomposes any real signal
f(t) into the sum

o0

f(t) =23 (R"f.95.)95.(t) (14)

n=0

where the indices £, = (S, Un, &n, ¢n) are chosen by maximizing [(R"f, gg, )|
over A. In practice this maximization is not feasible and an approximation
scheme as indicated in equations (4) and (5) has to be used. Define the
discretized complex dictionary by D, = {g, : v € I',}, a subset of the
complex Gabor dictionary where the index set I', is composed of all v =
(0, pa? Au, ka TAE), with a = 2, Au = %, Af =71, 0 < j < logy, N,
0<p< N27" and 0 < k < 2/FL In [13] it is proven (in the continuous
case) that if the parameters (s, u, £) are discretized in this way there exists an
a > 0 such that the MP algorithm is sub-optimal with respect to «, i.e., (5)
holds. The reader is referred to [13] for a thorough presentation of this dis-
cretization. It is numerically convenient to perform most of the computations
with complex Gabor vectors. We will work only with the three parameters
v = (s,u,£); explicit use of ¢ can be avoided by making use of the following
definition: given h € H, v = (s,u, &) and (h,g,) = a + ib and tan ¢ = b/a we
set 8= (s,u,&, p). Therefore we have

<h7 gﬁ> = K(s,u,§,¢) <h7 g’y>; (15)

Hence, we choose (3, in (14) in such a way that the following holds:

(R £, 99, = max (Ksuen[(R" £, 97)]) (16)



where tan(¢) = b/a and (R"f, g,) = a + ib.

2.2 MP Denoising

In this section we follow [13]. Let f be a vector in a finite dimensional Hilbert
space H. Let us denote

[(R"f, g5.)]
M(Rf) = ——=——"—. (17)
1R £l
Note that A,(h) only depends upon the position of HZ_\I on the unit sphere of

the space H. Let W be a discrete Gaussian white noise. For any n > 0, the
average value of \,(R"W) measured with a uniform probability distribution
over the unit sphere, is equal to the expected value E(),(R"W)). Indeed,
after normalization, the realizations of a discrete Gaussian white noise have
a uniform probability distribution over the unit sphere of H. We define the
coherent structures of a signal f as the first m vectors (gg, )Jo<n<m that have a
higher than average correlation with R"f. In other words, f has m coherent
structures if and only if for 0 < n <m

A (R f) > E(A(R"W)), (18)
and
Am(R™ ) < EAn(R™"W)). (19)

Empirical evidence that this is a well defined rule (i.e. that (19) actually
holds for a finite m) is given in [6]. To summarize: MP denoising is performed
by stopping the algorithm when the correlations between the residuals and
dictionary elements are comparable to the average noise correlations.

The problem of optimally stopping the algorithm is fundamental. The above
rule is an extrapolation of coherent basis thresholding on orthonormal basis
([14, page 465]) to general dictionaries. This stopping rule is useful in practical
situations but it is not optimal. At present, to the best of our knowledge, there
are no results in the theory of adaptive representations that can be used to
support a better choice of stopping rule (or choice of thresholding in other
adaptive algorithms). Our probabilistic version of the MP uses a probabilistic
generalization of the above rule and will be discussed in Section 3.
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3 Probabilistic MP Denoising

In this section a probabilistic extension of MP is introduced. Notation and
definitions are taken from Section 2.1. The goal is to randomize the param-
eters [ in order to have a probabilistic extension of the notion of coherence
introduced in Section 2.2. This is achieved by means of the notion of prob-
abilistic coherent structure, (28). The fact that MP is a recursive algorithm
is reflected by defining a measure in an infinite product space through condi-
tional probabilities. In practice the number of components is finite due to the
presence of a stopping time.

3.1 Main Definitions

For technical reasons we consider the components of the v parameters to be
limited to bounded intervals of the real line and the space H will be finite
dimensional . We denote these intervals by I;, 1 =1,2,3, and [ = I; x Iy x I3.
Explicitly the intervals are I} = [0,b—a], Iy = [a, b], I3 = [0, ¢|, where a < b are
real numbers and § and ¢ are positive real numbers. In applications ¢ will be
the smallest resolution in scale, [a, b] will be the support of the sampled signal
and ¢ the maximum expected frequency. Given that the number of coherent
components in one expansion is unbounded, the correct space for our approach
is I, Hence a point = € I" is a vector of parameters given by

x = (Y0,71,---)- (20)

For consistency with the notation of Appendix B we set xy = 9, 1 = 71,
.... For a given f € H we next define a probability measure on I". The
construction of this measure relies on the general construction of measures on
infinite product spaces ([3, pagel08]) by means of conditional densities which
we will assume factorize as the product of two nonnegative functions

Pu(TnlToy .o s n1, ) X p(xp|Toy .. s 2n1, ) T(Tn|To, - . Zn 1) (21)

where the constant of proportionality is in general a function of f, g, ... ,z,_;.
For clarity of exposition we present the construction of p,, in two stages.

Stage I (Construction of w): We introduce a distribution 7(z, |z, ..., Tn—_1)
on the set I. Define

T(Tn|To, - s Tno1) = T(Xn) = Ts(Sn)Tu(Un|Sn)Te(EnlSn) (22)

where 74(s,,) is the uniform distribution on [, (b—a)], 7y (uy|s,) is the uniform
distribution on the discrete set {a, a+s,/2,... ,a+Ks,/2} with K = L%J

11



and m¢(&,|sn) is the uniform distribution on the discrete set {0, =, 2%, ...,

‘i—:} where J = |22=|. This distribution is clearly motivated by the finite
subdictionary described in Section 2.1. Once the scale s is sampled we have
a uniform distribution over the discrete grid. Without loss of generality we
consider the density m(x,) to be properly normalized and will also use 7 to
denote the induced measure on I. We use the label v when referring to a
generic coordinate x,, € I.

Stage II (Construction of £,):

Let w € H be a sample from (discrete) Gaussian white noise and define the
random variables on the probability space (I, )

(23)

and

V(7) =E (M) (24)

where the expectation is taken with respect to the underlying measure of the
white noise process. Thus, the idea is to study the probability distribution
of inner products between Gaussian white noise and the dictionary elements.
Similarly, given coordinates xy,...,z,_1, define the following random vari-
ables on (I, 7) for the signal f and its residuals R"f:

R f 900
Yo(v) = TR

In Figure E.1 we plotted the densities of Y and Y,,, in Figure E.2 we plotted the
densities Y and Y for a given signal f. These definitions provide the concepts
to decide whether the dictionary can be used to denoise the given signal. We
want to isolate a subset of I where the corresponding Gabor functions have
high probability of correlating well with the function and low probability of
correlating well with the noise. To achieve this define

H{(s) = (m ({7[Yo(7) = s}) =7 ({7[Y'(7) = 5}))

and the coherence threshold parameter p by

(25)

p = max (arg (max H(s)>> (26)

s€(0,1)

If such a p does not exist, we consider this fact an indication that the dictio-
nary is not well suited to denoise the given signal. It is easy to see that the

12



possible values of (arg(max,c(,1) H(s))) are given by points of intersection of
the densities of Y and Y{. This value is not enough to be able to distinguish
signal from noise with high probability. To see this we introduce the notation

T ({1Y(v) € [pp+4]})
T ({YYa(7) € [pp+61})

rn(p,0) = (27)

The ratio ro(p,d) can be close to one for some ¢ > 0. This is the case in
Figure E.2 where the densities of Y and Y; (Yy computed with an example
signal from Section 4.4) are displayed. A confidence level n € [0,1] has to
be introduced to guarantee that ry remains small. Given 7, define the noise
threshold parameter T € [p, 1] as the smallest number such that ro(7, §) < 7 for
all 6 > 0. Both p and 7 are displayed in Figure E.2 for n = 0.25. A description
of how to compute this value of 1 is postponed until Section 4.4. We remark
that when the signal to noise ratio is large, 7 is close to p.

For a given residual R" f, probabilistic coherent structure is then given by those
labels v that satisfy

(R, 90))]
| f]

> T (28)

Inequality (28) suggests the following definition for ¢, (z, |z, ... , Zn_1, f). Let

(B, 9@0om )| Xprazn (@)
[l

(29)

En(xn|$07 <oy Tp—1, f) =

where Y4 is the characteristic function of the set A.

Having completed the construction of £, combining equations (29) and (22)
and (21) we have constructed a density p,(z,|%o, ... ,Z,, f) (up to a constan-
t) which puts more weight on values of x,, which correspond to large inner
products.

The densities p,, define a probability measure p on I"; the probability space
(2, ) mentioned in the introduction is then (I, 1). The new random variables
to be introduced below are defined on this probability space. Our goal is to
compute expected values of certain functionals defined on I which will depend
on a stopping time T also defined on I, so T'(x) will be a nonnegative integer
when = € IN. Given a stopping time T'(z) (to be defined shortly) define the
coherent component functionals C; : IN — R, (¢ € {t;}), by

T(x)

Col(x) = 3 (B*f, Gopon) )it (1) (30)

k=0

13



where

Rn+1f =f- Z <kav g(ka,¢k)> Ik ¢r) (31)
k=0

and ¢y satisfies tan ¢, = b/a with <ka, gxk> = a + ib; hence ¢ becomes a
function of f and zy,...,x;. The pointwise estimates are given by expected
values

E,(C) = [ Ci(@) dp(x). (32)

The vector approximation is denoted by E,(C').

We now define the stopping time 7" : I — N. To simplify, we use the notation
introduced in (27), define

T(xz) =inf {n|rpu(r,1) > 1} (33)

In other words, T'(z) is the smallest integer such that the probability of finding
probabilistic coherent structures at iteration 7'(z) + 1 is smaller than the
probability of finding noise.

We have found in our numerical experiments that this stopping time is inte-
grable, hence finite. This is the natural stopping rule given the above formal-
ism. For completeness, we argue now that the rule can be easily augmented to
make it finite by simple inspection. To see this, note that without loss of gen-
erality we can take 7 > 0 and 7 > «, where « is the parameter in equation (4),
it follows from the definition of [, in (29) that

(RS g )| 2 IR 7 2 @ sup [(R" S, g1.0)] (34)
Y

Then Theorem 1 is applicable, in particular equation (9) holds. From this
equation it follows that 7 ({7|Y,(y) € [r,1]}) is zero for some integer n or
||R™ f|| converges to zero. Hence we can augment the rule (33) by requiring to
stop as soon as ||R™f||* is smaller than the variance of the noise process.

The above framework will be called probabilistic matching pursuit (PMP).
3.2 Eztensions and Remarks

Next we comment briefly on the formalism just introduced. Specific instances
of the formal integrals appearing in (32) will be computed by producing sam-
ples from g and then computing an ergodic average. Sample points z¥ € I
are generated by sampling each component z¥ given the previous components

14



xk ... a% . From (30) it follows that only T'(z*) components are needed. To

sample from the densities given by (21) we have used the rejection method
(Appendix A). It is essential to use a sampling method that does not require
knowledge of the value of the normalization constants involved.

Given prior information on the frequency and/or spatial content of the given
signal it is possible to modify the density 7(-). It is important to notice that
the PMP framework contains (formally) the MP algorithm as a special case.
To see this let 7 be a uniform prior over the whole dictionary or finite sub-
dictionary and let 4, (z,) be a Dirac density supported in the label that gives
the maximum inner product.

It can be seen that even when the signal-to-noise ratio is relatively high, the
MP stopping rule may be far from optimal. In practical terms, this means that
the MP algorithm may overfit the underlying signal. The process of computing
averages has the positive effect of suppressing undesirable components which
were not detected by the stopping rule. At the same time, noise recognition
(the stopping rule) becomes a more pressing issue in our approach given that
we have to stop the iterations many times.

4 Performance Analysis of PMP

We next describe in detail the basic algorithms underlying a software im-
plementation of PMP. We also analyze the expected running time. Then with
simple examples we analyze why and when PMP improves the estimates given
by MP. Numerical examples of typical denoising tasks are also provided.

4.1 Description of the Algorithm

In this section we provide details on computing the parameters that specify
a model of PMP. Our implementation of MP differs from that of [13] in that
we do not periodize the functions nor do we add the Dirac and Fourier dictio-
naries. Moreover, the implementation described in [13] maximizes only over
|(R"f, g4)| in (16) and then performs a local optimization in order to find ¢.

Our estimates are given by

T(x)
By(Cu) = [ Cule) di@) = [ 32 (RS, g1, ) (1) (o) -
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The points ¥ are sampled from the joint densities

p(l"o, 7ajn|f): Hpk(xk|x07 7xk717f)' (36)
k=0
We need only sample the coordinates £, . .. ,x’},(xk for each z¥. We do this by

means of the conditional distribution method in conjunction with the rejection
method (see [8] and Appendix A). We say that the k% iteration of PMP has
ended when the coordinates ¥, ... ,x%mk) of the point z¥ € IV have been
sampled.

To use the rejection algorithm we need to bound p,, from above with a density
from which we can sample. Let d, be the constant of normalization for p,,. We
have the obvious inequality

Pn(n) = dpln(v0)7(2,) < dpm () (37)
so d,, > 1. We are now in a position to describe the sampling of the coordinate
xF given the previous x%,... 2% | coordinates. We sample z¥ by sampling

' = (¢, u, &) from 7(z) and then we accept v' = (s', 4/, £") with probability

R" y Y(s' ' 9! n>T '
- ||3%¢7)%}>||‘ M, (39)

We continue until acceptance of a proposed coordinate z¥ = +' and end the
k™ iteration if T'(x*) = n, where T'(z*) is given by (33). Otherwise we repeat
the above procedure to sample z¥ .

4.2 Ezpected Running Time of the Algorithm

Let K be the number of proposals before z,, is accepted. It follows from [8, page
42] that E(K) = d,,. Given that the number of computations for each proposed
component is bounded by N, an iteration of PMP for T'(x) = P components
requires a number of operations of the order O(XF_ d,,N) (making use of the
fast expansions of Appendix C). It is easy to check that

S ST .

So in fact we can see that if E(T') denotes the expected stopping time, one
iteration of PMP takes of the order O(NE(T)) operations.

The closer the index n of z, is to P the slower the acceptance step becomes
because d, becomes larger. This fact is independent of N and can be used to
improve the stopping rule in practical situations. As described in Appendix B,

16



many of the computations performed in previous iterations can be reused in
later iterations of PMP. Moreover, there are several methods to accelerate the
rejection algorithm, some of which are mentioned in Appendix A.

4.3  Convexity Improvements of PMP

In this section we show with simple examples the main reason for the improve-
ment in the estimates given by PMP. This remark also indicates under which
conditions one can expect an improvement of PMP relative to MP. To better
illustrate the phenomena we consider the functions f; i = 1,2, 3 defined in the
next section. These functions have no Gaussian noise added. This fact does
not prevent the application of the PMP algorithm given that we can take the
variance of the Gaussian noise, which is needed to apply the formalism, as
small as we want because the distribution of ¥ in (24) is independent of the
variance. The letter f will stand for any of the three functions f;. Given z*,
sampled from p, we denote with f(2*) the approximation to f given by the
k'™ iteration of PMP. We perform the following numerical experiment: given
€ > 0 we will stop the approximation of iteration & when

T
ST S

Therefore we have exchanged (33) with the stopping rule (40). Denote the
approximation of PMP by f” = [ fP(x) du(x). Similarly, let f* denote the
approximation of MP obtained by the same stopping rule. In general, if € is
small, we have =@ ~ RMSE(fM) = WL for each 2*. As mentioned

£ 171l
in the introduction from Jensen’s inequality we have:

=171 Il = @)l
d
</

RMSE(f" (")) (40)

p() (41)

and the right hand side is approximately equal to ufm”\y Tables D.1. and D.2.

report the values of the left hand side (see the column titled “PMP RMSE”)
and right hand side (see the column titled “Avg RMSE”) of (41). We also
report the RMSE of MP (see the column titled “MP RMSE”). These values
give an idea of the percentage of improvement in the RMSE to be expected
from PMP and, most importantly, it indicates that PMP can generate different
expansions that complement each other to reinforce a better reconstruction.

Now consider a noisy function f = 2z + ocw. When can we expect the above
percentage improvements to be reflected in the denoising task? To answer this
question consider the situation where MP delivers optimal denoised approxi-
mations. In particular, this is the case when z is an element in the dictionary
or a linear expansion of dictionary elements z = 3 5. cs3g95 With (gg, gg) = 0,
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B, " € B. In this situation one expects that ||f—Hf;’H(:n)\| > ”fﬂ]{”M” for most x in

the support of ;4 and hence the PMP denoised approximation may not offer an
improvement. A numerical example is presented in Section 4.4. Redundant dic-
tionaries are not orthogonal and the ideal z considered above will not be typical
in practice. In general we have observed that PMP improves over MP when

”f’”f;"'(w)" R~ Hfﬁff‘;‘ﬂl for most x in the support of u. The simplest example of this

situation is when z = gg, +¢3, and |(gs,, g3,)| > 0. Let us introduce the follow-
ing convenient notation for the residuals R} f = f—(f, gs,)gs,- MP can give one
of the following two denoised approximations f{” = (f, gs,)9s, + (Rl [, 95,) 95,
or f2P = <f7 gﬁ2>gﬁ2 + <R%f7 gﬂ1>gﬂ1‘ It <f7 gﬂ1> ~ <f7 gﬁ2> both expansions a
priori offer the same quality of reconstruction, and both will be included in
the PMP reconstruction but only one in the MP reconstruction. A numerical
result for an instance of this situation is reported in Section 4.4. Notice that
these multiple expansions will not be available in a dictionary consisting of a
single orthonormal basis.

4.4 Simulated Examples

In our numerical experiments we set ¢« = 0, 6 = 1, b = 127 and ¢ = 27, i.e.,
we consider signals sampled uniformly one unit apart in the interval [0, 127].
The expectation in (24) was computed with 30 averages of samples of Gaussian
white noise w. The value of the parameter n = 0.25 (introduced in Section 3.1)
was obtained by studying the effect on the value of p when changing Y by Y,
(for many samples w) in equation (26). The underlying functions which we
study in the simulated examples are

2, t€[0,b/3),
fi(t) = < t2(sin(t/12) + sin(t/4), t € [b/3,2b/3) (42)
—t* +100¢, t € [20/3,0]
f2(t) = 9(30,52,7/5,0) (t) + 9(60,30,7/15,0) () + (50,90, /25,0) () (43)
f3(t) = sin(t/2) + sin(t/8) (44)

The signals f;; associated with f; were obtained by adding Gaussian white
noise with variance such that the signal to noise ratio is [, j = 1,... ,4; see
Table D.3. The graphs of some of the functions f;; are given in Figures E.3
through E.8; the original signals f; are shown by the solid line in each of the
figures while the signals with added noise are shown by the dotted lines. The
density of Yy(vy) = <f1,3, g(%¢)>/||f371|| is plotted alongside the density of Y ()
and Y, () in Figure E.1. (see equations (24) and (23)). The values of p are
obtained as crossing points in these type of graphs. It turns out that the values
of 7 are similar in each of our examples; see Table D.4 below.
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The reconstructed functions will be denoted by f and f}" for methods PM P
and M respectively. The Relative Mean Squared Error (RMSE) of the recon-
struction of signal f; at noise level 7 by method X is defined by

X
rusE(fY) — Tl (45)

1f:l
where the norms are induced by the inner products. A detailed list of the
RMSEs in each of the cases is given in Table D.5.

It is important to note that the reported relative mean squared errors for the
MP algorithm are hand-picked to be the best possible (for our implementa-
tion). That is, we have stopped the MP expansions when it gives the best
possible expansion. This is done to better highlight the improvements of PMP
without having to worry about problems in the stopping rule of MP.

If, more realistically, MP is stopped automatically as suggested in Section 2.2,
then the improvements of PMP over MP are more dramatic. For example,
Figure E.9 illustrates the reconstruction of f35 by matching pursuit, while
Figure E.10 shows the reconstruction by method A with our automatic stop-
ping rule. A detailed picture of the progress of MP in this case is given in
Table D.6. An improved version of the automatic stopping rule described in
Section 2.2 stops MP at an RMSE of 0.746 which is clearly not the best. The
automatic stopping rule for method PMP gives an RMSE of 0.477.

We now give an example of the situation described at the end of Section 4.3.
Consider the functions

fa(t) = g(sa.64,7/8,0)(t) + g(16,120,7/8,m) (1) (46)
f5(t) = gea,64,7/8,0)(t) + 916,56,7/8,7) (1) - (47)

The dictionary functions that make up f, are nearly orthogonal. One of these
functions is translated and used to define f5, so the quasi orthogonality is then
lost and multiple expansions, of a priori good reconstruction quality, become
available. The graphs of f, and f5; and its noisy versions are shown in Figures
E.11 and E.12. The RMSE obtained from MP for the noisy functions f4; and
f5,1 are 0.089 and 0.231 respectively. The RMSE obtained from PMP are 0.170
0.198 respectively.

5 Conclusion

We have introduced an extension of the matching pursuit algorithm which
randomly generates multiple expansions of a signal with respect to a redun-
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dant dictionary. Probability is used as a technique to identify a subset of the
dictionary vectors which potentially offer a good reconstruction of the given
signal.

Probabilistic matching pursuit really is an extension of MP in the sense that
MP is a special case of PMP. We have selected a simple method of deciding
how to choose the next term of an expansion by placing a uniform probability
distribution on dictionary elements that match the signal above a certain
threshold value. With that simple method, we have found that each random
expansion obtained has more components than an MP expansion but the
average time for the computation of an expansion is smaller.

Random selection of expansions also provides us with the opportunity of im-
proving results by averaging. Some conditions under which this is actually the
case are discussed and studied numerically. We conclude that our particular
implementation of PMP is better than MP when MP is not optimal, which is
generally the case when a signal does not have an efficient representation in
terms of a small number of dictionary elements.

In summary, adaptive signal analysis offers a collection of good quality ex-
pansions of a signal, and we show that better estimates are obtained under
certain conditions by averaging over a reasonable random selection of those
expansions.

5.1 Future Prospects

We suspect that better selection methods can give clear improvements over
MP under all conditions. In particular, we could make better use of a priori
information obtained from initial analysis of the signal, for example to always
select an overwhelmingly good match from the dictionary, which would ensure
that PMP outperforms MP in all cases we have examined.

The PMP formalism introduced here gives strong indication that it is worth
studying the degeneracy implicit in adaptive methods on redundant dictionar-
ies. In particular, the coherent subset of vectors introduced in the paper can
be studied by means other than the densities introduced here. For example,
simulated annealing could be used to explore the region.

A Appendix: Rejection Method

In our implementations we have used the rejection method [8, page 42] to
generate samples. Here we briefly describe the algorithm.
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Suppose we are given densities f, g with associated random variables X, X,
and a constant d > 1 such that

flz) < dg(z) (A1)

for all z € R?. Samples z; from X; can be obtained as follows: sample, in-
dependently, z, from X, and u from a random variable uniformly distributed
on [0,1]. Let zf =z, if

f(zy)
dg(z,)
otherwise repeat the above. The sequence generated in this way are then

independent samples from X ;. To connect this notation with that of (37) we
take p, = f, d, = d and ™ = g¢.

> U

Unless sharp bounds for the densities are available, the method could be in-
efficient. There are methods of accelerating the algorithm; for instance [20]
proposes combining the usual rejection method with the Metropolis algorith-
m. A simple way to accelerate the rejection algorithm for our model is to use an

empirical (approximate) bound for % in combination with the methods
described in [20]. Faster dynamical sampling methods, such us Markov Chain

Monte Carlo [11], [17], are available but are less reliable.

B Appendix: The Bernoulli Shift

Next we describe another method, based on the Bernoulli shift, which can be
used to reduce the overall running time of the algorithm. The Bernoulli shift
enables one to make use of partial computations when running the rejection
algorithm. Our discussion is applicable to models of PMP which use the rejec-
tion method for sampling. We begin by indicating why MP can be efficiently
implemented [14, page 415]. Given

R f =R"f —(R"f,95,) 95, (B.1)

the MP algorithm maximizes |(R""'f, g5)| in a sub-optimal way. From (16)
and by unraveling (B.1) we see that for doing this computation we only need
to compute (f,gy,), 7 € I'a and (gs,,9y), v € [ for k = 0,... ,n. These
computations can be arranged in a way that partial computations (namely
(R"1f,g,.)) can be reused. Details are given in [13].

Equation (B.1) can be used in the probabilistic setting by keeping the values
of (f,gs,) and <ggi,gﬁj> in memory where the parameters v, = (sp, up, &)
have been sampled from 7 () given by (22). Below we show how this idea can
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be formalized. We restrict the presentation to our specialized setting; more
general and extensive discussions are given in [4] and [2].

Let (2, P) be a probability space and X : Q@ — I be a stochastic process
with coordinates (X;), i € N where I = I; x --- X I3, and the intervals I;
were introduced at the beginning of Section 3. We denote the law of X by
= P o X~'. We are interested in evaluating integrals of functionals along
paths of this stochastic process, i.e., given a real valued functional C' on I
we want to evaluate

:/cww»ﬂmm (B.2)

We assume that C' depends only on a finite number of components of X (w)
for each w; actually, these components are 0,... ,T(X(w)). T o X is a finite
stopping time on 2. At this point we indicate how this notation relates to that
of Section 3. The space (2, P) is the (formal) probability space underlying
the sampling process by means of the rejection method. The law of X i.e.,

pu = Po X! corresponds to the measure on I mentioned below equation
(21).

The process of producing uniformly distributed random numbers and sampling
with the rejection algorithm is formalized as follows. There exists a probability
space (©',d)), which in our applications will be [0,1]* with the Lebesgue
product measure and Borel sets, and a stochastic process V = (V) with V' :
QO — N, We assume that the coordinates of V are random variables Vi
which are independent and identically distributed with measure d\ = PoV,™!.
The space O™ is considered as a probability space with the product measure
d\®N = PoV ! The following notation is used below: V(w) = v = (vg, vy, ... ),
where v; = ([v], ..., [v]s) €]0,1]* and X (w) =z = (xg,21,...) where z; € I.
Finally, the sampling process (implicitly) defines a function F': N__, N

X =F(V) (B.3)

Equation (B.3) amounts to a representation of X on (", dA®¥). It is this fact
that allows the use of the Bernoulli shift. The left shift is defined by Qv = 2
for v, z € Q™ and [2]; = [v];11. The left shift is an ergodic transformation; this
fact justifies the replacement of integrals by limits below.

/C dpu(z /C (@)

= [ C(F(V(w) dP(w) = / C(F(v) dA™"(v) (B.4)
1 K-1

:hm—ZC'

K—oco K

Therefore the computation of (B.4) amounts to evaluating C' at a point F(v) =

2 = (20, ... , g0, .- ) and its translates by the shift, i.e., 2* = F(0%0).
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Now the key idea is that in order to compute F(©*v) we may reuse previously
computed quantities which were needed to obtain z7, j = 1,... ,k — 1. For
example, let us see how z{ is constructed. If

vo = ([voy [vols, [vols, [vol,) € [0,1]* (B.5)

are four random numbers and ¢y represents the associated random Gabor

function. Explicitly, go = ¢4,, Yo = (S0, u0,&o) and, as described below (22)
0= (el (b0 — 8)), o = (at <0000 gy = Jxivhy wigh - — | C-a)2,

2 S0

and J = [ 22| Then if Lrgoll > 7 and

171
[{f, 90)]
171l

> [vo)a (B.6)

we let

xg = (50, o, o), (B.7)

otherwise we perform the same computations with

G = G, (B.8)

In general, there exists an integer kg such that

‘7"8 = (Skovukoagko)' (Bg)

Similar computations will give z9,... ,xOT(mO) for a given stopping time T.

While performing these computations, the following numbers must be com-
puted:

<f7 gZ> <gwg]> for Za] = 07 s 7kT($1)7 i < j7 (BlO)

where in general kp(,1) > T'(z'). Regarding the generation of random num-
bers, we only need to generate kp1y + 1 batches (of size four). Therefore
v = (v,. .. s Vkppny - .) where the second set of dots indicate that those co-
ordinates have not yet been generated. The next point, x!, is computed by
using ©v = (vy,...). The quantities in (B.10) are saved in memory; we may
have to generate v, for n > kpgpoy only if T'(z') > T'(2°). This scheme allows
for a systematic reuse of partial computations involving expensive function

evaluations.

C Appendix: Inner Products of Gabor Functions

In this appendix we consider the problem of efficiently evaluating inner prod-
ucts of Gabor functions. Four different kinds of Gabor functions are considered:
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real and complex valued functions which are either continuous (defined on the
real line) or discrete (defined on the discrete subgroup 6Z of the real line).
In the continuous case exact formulas in terms of elementary functions are
possible, while in the discrete case only approximations are possible, in which
case we find efficient series approximations.

C.1 Complex Gabor functions on R

The complex Gabor functions on the real line are

_ 21/4K(sru’§) 677r(t7u)2/52 ezft

Iisug)(t) = NG , sERT u,£€R (C.1)

where K, , ¢) is a normalization constant; it is not difficult to see that K, , ¢ =
1 in this case. The inner product of two such functions is

212K\ K,
2/S0S51 R

The above integral may be evaluated explicitly by completing the square in
the exponent to obtain

(90,91 = er-10) s -rlt-w) /s miE - gy (0.9)

t— 2 t— 2
S0 S1
where
L1 T (fug Uy ud  u? )
A=r|S5+— B=—|=5+— C=-1|=5+— AB
W<53+3%>, A<3%+5%>’ W(sﬁ—i_s% + ’
(C.4)
and then evaluating the Fourier transform of a Gaussian to obtain
o \ /2 9 .
= —(&1—60)*/4A=i(&1—E0) B+C 5
(90, 91) <3031A> e (C.5)

where A, B, C' are given by (C.4).
C.2 Real Gabor functions on R

Real Gabor functions on R are formed by replacing e*! with cos(&t + @):

2K (s 0)

Cr(t—w)2 /52
Isuep)(t) = NE e TS cos(Et + ),

se R u, eR ¢ €10,27), (C.6)
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where K(s,.¢4) is a normalization constant to be found (it is generally not 1
in this case). The inner product of two such functions is

212K\ K,
\/S0S1 R

e*ﬂ(t7u0)2/sgefﬂ(tf’u.l)2/s%

(90, 91) =
cos(&ot + o) cos(&it + ¢1) dt. (C.7)

The above integral may be reduced to the complex case by the trigonometric
identity

4cos X cos Y = e/XHY) 4 oY) 4 pi0XHY) L pi(= X)) (C.8)
to obtain
1/2 ~(st)2/2m 4 1] M2
Ksues = 2/ [cos(2(6u + ¢))e +1] (C.9)
and
21/2K0K1 ™ 1/2 C 2
_ s B —(6o+€1)?/44
o) ===t () <€ [eon((eo B+ (00 + 91)e

+cos((& — &) B + (g0 — ¢1))e” @~/ (C.10)

where A, B, C are again given by (C.4).

The above formulas may be used as approximations in the discrete case by con-
sidering the discrete sums as Riemann sum approximations for corresponding
integrals; however, more accurate evaluations methods using theta functions
are available, and are explored in the following two sections.

C.3 Complex Gabor functions on 0%

The discrete complex Gabor functions are just samples of the continuous Ga-
bor functions at the points 6Z:

_ 21/4K(57u7§) —m(0dn—u)?/s? iton +
isue)(n) = s € e seRY u, eR (C.11)
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The inner product of two such functions is just (C.2) with the integral replaced
by a sum:

21/2K K 00
(gg,gl> SO[;I 1 Z e~ (5n UO /S —71'(577, ul)/ (fl 50)671, (012)
_ 2V2KGK,

i o D2 An? 46(2AB—i(E1 ~€0))n—AB? +C (C.13)

m n=-—oo
1/2 o0

— mec_m Y AN IRABiG —to)n, (C.14)
e o

The above expression may be written in terms of the theta function [21, page
464]

o0

Z eantQsz. (015)
Clearly
2K K 2 , i02A
(90, 1) = ﬁec_ﬁ' 03 (5(—1143 (&1 —&)/2); ) . (C.16)

In general, theta functions cannot be evaluated in terms of more elementary
functions. We may approximate the value using the series (C.15), but for small
values of 524 the series converges rather slowly.

Fortunately, the theory of theta functions provides a way of quickly evaluating
such expressions to a high degree of accuracy. Using the Poisson identity [21,
page 475]

2/ 1
0 (1) = (—it)~/2e7/mitg, (% 7) (C.17)

our theta function can be rearranged in a manner which facilitates rapid cal-
culation:

<90 91> — weC—Am (i) 1/2 e—(iAB+(§1—§0)/2)2/A
’ V5051 02A
m(—iAB — (& — &)/2) im
s ( A 5] (C18)

The series for the latter theta function converges more rapidly the smaller the
value of §?A. This series may be evaluated to accuracy € in time O(y/loge).
For many cases, only the leading term of the series for the theta function
is required, in which case the formulas in the discrete case are equal to the
formulas in the continuous case. As the variance of the Gaussian envelope of
the Gabor function tends tends to the mesh width &, more terms of the theta
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series are required for accurate approximation, but this still allows us (for s
bounded away from zero and for fixed §) to evaluate inner products of Gabor
functions in constant time.

C.4 Real Gabor functions on 67

These functions are just samples of the real continuous Gabor functions at the
points 0%Z:

_ 21/4K(s,u,§,¢>) —m(dn—u)?/s? 5
I(sug0) (M) = N cos(&6n + ¢),

se Rt u, £ eR ¢ €0,27r). (C.19)

The inner product of two such functions is just (C.7) with the integral replaced
by a sum:

1/2
2PKOKL N ninuo)? s n(n)

1
V091 pn= o

(90, 91) =
cos(&0n + ¢p) cos(§10n + o). (C.20)

The above expression may again be reduced to the complex case by the
trigonometric identity (C.8) to obtain

22K K 2 (T \1/2
(90, 91) = —— A ( 2 >
2\/8081 02A

Re (ei(¢>1+¢0)6(iAB+(§1+§0)/2)2/A93 (W(_iAB - (61 + 60)/2) T )

10A T52A

(61 —00) (iAB+(E1—E0)/2)° /A [ T(ZIAB = (& — &)/2)  im
+e (& 93( oA 524 (021)

which again converges more rapidly the smaller the value of 624 and may be
evaluated to accuracy € in time O(y/loge).
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D Tables

Table D.1

Jensen’s Inequality with Stopping at RMSE=0.2

Table D.2

Signal | PMP RMSE | Avg RMSE | MP RMSE
fi 0.109 0.192 0.197
f2 0.052 0.190 0.181
f3 0.059 0.190 0.169

Jensen’s Inequality with Stopping at RMSE=0.4

Signal | PMP RMSE | Ave. RMSE | MP RMSE
fi 0.235 0378 0.358
f2 0.136 0.375 0.281
f3 0.164 0.379 0.339
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Table D.3
Signal to Noise Ratio for Noise Levels j =1,... ,4

NLj [1]2] 3 |4
SNRI;j |5|2]125]1

Table D.4
7 for Various Signals

Noise Level

Signal | 0 | 1 | 2 | 3 | 4

fi 0.31 | 0.31 | 0.31 |{ 0.32 | 0.32

f2 0.31 | 0.28 | 0.30 | 0.27 | 0.26

f3 0.28 | 0.29 | 0.29 | 0.27 | 0.25

Table D.5
Relative Mean Squared Errors in All Cases

Signal | Method P | Method M
fia 0.231 0.314
Ji2 0.320 0.444
fi3 0.366 0.542
Jia 0.462 0.629
f 0.215 0.347
f2,2 0.343 0.438
f23 0.381 0.522
fau 0.434 0.567
f31 0.245 0.312
f3,2 0.350 0.437
3,3 0.408 0.504
f34 0.478 0.660
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Table D.6
MP Iterations for f34

Iteration | IP MP | IP Noise | RMSE | Comment
1 0.455 0.320 0.823
2 0.427 0.313 0.672
3 0.347 0.311 0.609 | BEST
4 0.358 0.300 0.704
5 0.333 0.274 0.714
6 0.340 0.270 0.745 | STOP
7 0.293 0.277 0.793
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